Why?

We have all pushed shopping carts, wagons, or toy cars. If we push for just a second and then let go, the object continues moving at a particular velocity. What if more people push the same object so the force increases? What if the object we are pushing has more mass? In this activity we will explore what happens in both these situations.

As you work through the following questions, be sure to follow your team role(s).

Model 1-

Different numbers of people pushing two people on a skateboard

Trial A

Stopwatch Time Velocity

(seconds)	$(\mathrm{m} / \mathrm{sec})$
0	0
1	0.5
2	1
3	1.5
4	2
5	2.5

Stopwatch Time Velocity

(seconds)	$(\mathrm{m} / \mathrm{sec})$
0	0
1	1
2	2
3	3
4	4
5	5

Stopwatch Time Velocity

(seconds)	$(\mathrm{m} / \mathrm{sec})$
0	0
1	2
2	4
3	6
4	8
5	10

* \forall [

¡SIYL Peəy

¿โ!

6. Create a data table to show how amount of net force affects the acceleration of an object. Use information from Model 1.

Amount of net force (number of people pushing The skateboarders)	Acceleration ($\mathrm{m} / \mathrm{sec}^{2}$) (how much faster the skateboarders move as each second passes)	
A		
B		
C		

7. Complete the sentence below to describe how acceleration changes as you increase the amount of net force applied to an object. Use your data table from question 6 .

As you double the amount of net force applied to an object, the acceleration of the object...

Send spies to check your team's answer to question 7 with two other teams before you continue.
8. Look carefully at the acceleration values shown in Model 1. Discuss with your team. Predict the acceleration for 8 people pushing the two skateboarders. Include the correct units.
Explain how you decided on your answer.
(spuooes) ou!L youeadoas

K!oolon วuml yoleadols

Mivolan oumL yoaendois

Use the information in Model 2 to answer questions 9-17.

 Reach agreement with your team before writing down your consensus answers.9. How many different trials are shown in Model 2?
10. Which trial is the same as one shown in Model 1?
11. How many people are pushing the skateboarders in every trial?
12. How many people are standing on the skateboard in each trial?
a. Trial \mathbf{D} includes \qquad standing on the skateboard.
b. Trial B includes \qquad standing on the skateboard.
c. Trial \mathbf{E} includes \qquad standing on the skateboard.

Read This!

Recall that we use the term mass to describe the amount of stuff in an object.
13. Which trial in Model 2 shows the largest mass on the skateboard? Explain your answer. Include specific details from Model 2 in your explanation. Assume that each person standing on the skateboard has a mass of 50 kg .
14. Look carefully at the data table and graph for Trial D in Model 2. Use either the data table or the graph to answer the following questions about Trial D.
a. After two people push the skateboarder for 2 seconds, how fast will the skateboarder be moving? Circle your answer.

$$
2 \mathrm{~m} / \mathrm{sec} \quad 4 \mathrm{~m} / \mathrm{sec} \quad 6 \mathrm{~m} / \mathrm{sec} \quad 8 \mathrm{~m} / \mathrm{sec} \quad 10 \mathrm{~m} / \mathrm{sec}
$$

b. If the pushers stop applying force to the skateboarder after 4 seconds, how fast will the skateboarder be moving?

$$
2 \mathrm{~m} / \mathrm{sec} \quad 4 \mathrm{~m} / \mathrm{sec} \quad 6 \mathrm{~m} / \mathrm{sec} \quad 8 \mathrm{~m} / \mathrm{sec} \quad 10 \mathrm{~m} / \mathrm{sec}
$$

Send spies to check your team's answers to questions 13 and 14 with two other teams before you continue.

		' ${ }^{\text {I }}$
		g
		a
(sassed puozas чว飞ว se әлои 	(8Y 0¢ fo sseut e sey uos.əәd 	

Read This!

Physicists use a unit called the Newton to measure the pushing or pulling force acting on an object. A Newton is abbreviated as \mathbf{N}. One $\mathrm{N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}^{2}$

Model 3 - How are force, mass, and acceleration related?

Situation	Net force (N)	Mass (kg)	Acceleration $\left(\mathrm{m} /\right.$ sec $\left.^{2}\right)$
\mathbf{F}	50	100	0.5
\mathbf{G}	100	100	1
\mathbf{H}	200	100	2
\mathbf{I}	400	200	2
\mathbf{J}	600	300	2

Use the information in Model 3 to answer questions 18-23. Reach agreement with your team before writing down your consensus answers.
18. Add the following abbreviations to the data table in Model 3. Write each abbreviation above the correct column.

Variable	Abbreviation
Net force	$\mathbf{F}_{\text {net }}$
Mass	m
Acceleration	\mathbf{a}

19. Highlight the headings of all columns in Model 3 that contain numerical values.
20. Discuss with your team. What patterns do you see among the numbers within each row of the data table in Model 3? You do not need to write anything down.

			UI
			$\boldsymbol{e}={ }^{-700}$
			$\mathbf{u}=\frac{\mathrm{e}}{\overline{\mathrm{~T}}}$
			$\boldsymbol{e} \cdot \mathrm{u}={ }^{\text {rum }} \mathbf{H}$
			$\boldsymbol{e}+\boldsymbol{u}={ }^{\mathfrak{1} \boldsymbol{u}} \mathbf{H}$
			$u=e \cdot{ }^{2 \partial u} \mathbf{H}$
			$\boldsymbol{e}=\mathrm{u} \cdot{ }^{120} \mathbf{H}$
ON	S3X		

$$
\mathrm{Z}=\mathrm{XX} \quad \text { то } \quad \mathrm{Z}=(\mathrm{X})(\mathrm{X}) \quad \text { то } \quad \mathrm{Z}=\mathrm{X} \bullet \mathrm{X} \quad \text { то } \quad \mathrm{Z}=\mathrm{X}^{\mathrm{x}} \mathrm{X}
$$

:sイем әsәч јо Кие

$$
0 \varepsilon=(\varsigma)(9) \quad \text { по } \quad 0 \varepsilon=\varsigma \bullet 9 \quad \text { то } \quad 0 \varepsilon=\varsigma \times 9
$$

 -иоп̣гп̣̆
22. Look carefully at your answers to question 21.
a. Circle the three mathematical equations in the data table that are valid for showing the mathematical relationship among net force, mass, and acceleration.
b. Which of the three equations seems easiest to use? Write it here.
c. Explain why this equation seems easiest to use.
23. In physics there are many problems that explore the relationships among net force, mass, and acceleration. Use your ideas from question 22 to answer the following questions.
a. An object is traveling with an acceleration of $2 \mathrm{~m} / \mathrm{sec}^{2}$. The object has a mass of 40 kg . What amount of net force must be pushing or pulling the object?
Show your setup and calculations. Include the correct units for each number.
b. Imagine that you keep the net force the same but increase the object's mass. What will happen to the object's acceleration? Will acceleration increase, decrease, or remain the same? Explain your answer.
c. Imagine that you keep the object's mass the same but increase the net force. What will happen to the object's acceleration? Will acceleration increase, decrease, or remain the same? Explain your answer.

Check your team's answer to question 23 with your teacher before you continue.

What I Still Wonder...

24. Write one additional question you have about the relationships among net force, acceleration, and mass of a moving object.

XHY

		c		W
$0 \downarrow+$		01		'T
		9		H
$\begin{gathered} (N) \\ \text { әу10-1 } \end{gathered}$	$\begin{gathered} (\mathrm{p} \partial \mathrm{~s} / \mathrm{ut}) \\ \text { wo!̣erəposv } \end{gathered}$	$\begin{gathered} (8 y) \\ \operatorname{ssew} \end{gathered}$	wexam!d	[

	N se pəғе!

;SICLL Peəy

¡Sṭ,L peəy
27. Use the equation $\mathbf{F}_{\text {net }}=\mathbf{m} \bullet$ a to solve the problems below. Include correct units for each number.
a. An object is traveling with an acceleration of $2 \mathrm{~m} / \mathrm{sec}^{2}$. The object has a mass of 40 kg . What amount of net force must be pushing or pulling the object?
Show your setup and calculations.
b. An object is traveling along at a steady velocity (the acceleration is $0 \mathrm{~m} / \mathrm{sec}^{2}$). The object has a mass of 20 kg . What amount of net force must be pushing or pulling the object?
c. A 10 kg object experiences a net force of 5 N pushing it.

What is the acceleration of the object?
d. An object is moving along with an acceleration of $30 \mathrm{~m} / \mathrm{sec}^{2}$.

If the net force pushing the object is 90 N , what is the mass of the object?

XGY

